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Abstract. This paper contains introductory notes to the special issue of the Journal of Engineering Mathematics
about the life and scientific work of L. N. G. Filon (1875-1937). The objective of this paper is to provide a complete
description of the influence of Filon’s two fundamental papers [1, 2] cited in the classical texbooks on the theory
of elasticity by Love and Timoshenko and to document related contributions in various branches of engineering
mathematics and mechanics conducted over the past twenty years. The biharmonic equation, which is a central
aspect of Filon’s works, has provided engineers and scientists with a wealth of avenues for the investigation of
a variety of problems in applied mechanics and engineering mathematics dealing with the theory of bending of
plates, two-dimensional and axisymmetric problems of stress analysis in solids and two-dimensional problems
of slow viscous flow. Through the celebration of Filon’s classical works we are also given an opportunity for
examining the role of the biharmonic equation in the formulation and solution of problems in mechanics and
applied mathematics.
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1. Introduction

With this special issue of the Journal of Engineering Mathematics we celebrate the centenary
of two fundamental contributions [1, 2] of L.N. G. Filon (1875-1937) to the development
of the classical theory of elasticity. These papers contain mathematical statements of the
boundary-value problems of the linear theory of elasticity that can be finally reduced to clas-
sical biharmonic problems for one scalar function of two coordinates with prescribed values
of the function and its normal derivative at the boundary. In spite of the remark by Jeffery [3,
p. 265], that all these biharmonic problems ‘seem to be a branch of mathematical physics in
which knowledge comes by the patient accumulation of special solutions rather than by the
establishment of great general propositions’, such problems were and still present challenging
opportunities for applications in a variety of areas including the linear theory of elasticity,
low-Reynolds-number hydrodynamics, structural mechanics of plates, and applied mechanics
and mathematics.

We believe this anniversary offers us the opportunity to examine developments and appli-
cations of biharmonic problems in mechanics in the twentieth century.
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2. Filon’sbenchmark memoirs

By the year 1901, Louis Napoleon George Filon, a rather shy young man full of strange
enthusiasms (according to the recollections of his contemporaries), was the author of five
papers (two in collaboration with the famous Karl Pearson) on a range of problems in math-
ematics and mechanics dealing with statistics, optics, elasticity and observational astronomy
published in leading British journals of that time. In the late nineteenth century, the topic of
torsion of elastic bodies had been examined by a number of eminent mechanicians including
Coulomb, Navier and Saint-Venant. The torsion of non-circular prismatic bars in particular
was examined by Saint-Venant in an inspired study [4] that led to the development of the
inverse method [5-12]. Its publication represented both extensions and improvements to the
theories proposed by Coulomb and Navier. Filon’s most important work during the period
that followed was a paper [13] on the distribution of shearing stresses on the torsion of elastic
shafts, which was later to be cited by Love [7, Section 219], Timoshenko [14, Section 48],
[15, Sections 75 and 79], and Timoshenko and Goodier [8, Section 106]. Filon had already
discovered the direction in which his chief interest was to lie and in which he was to do his best
studies. He was well qualified for work in this field and he knew its literature thoroughly. In a
one year time interval, from May 20, 1901 to June 12, 1902 he submitted to the Royal Society
two extensive papers on this topic. These papers (see also detailed abstracts [16, 17], which
according to the traditions of the Royal Society at that time, were published very shortly
after submission of the extensive manuscripts) are now regarded as benchmark studies in
both engineering and applied mathematics. They dealt with practical problems of evaluation
of stresses in short cylinders or rectangular plates either in tension, by applying a system of
shearing forces along their cylindrical surface, or in compression between two absolutely rigid
plates. Filon constructed approximate but reliable analytical solutions to these problems and
discussed in length specific numerical results. (He constantly insisted that no mathematical
results in physics, however elegant, were of any value unless it was carried through to the nu-
merical evaluation of measurable quantities.) These two papers have ultimately been referred
to in many textbooks on the theory of elasticity, and in recent research articles. A concise
documentary of their contents may be of interest to the readers.

2.1. FILON’S PAPER OF 1902 ON EQUILIBRIUM OF FINITE ELASTIC CYLINDERS AND ITS
SUBSEQUENT DEVELOPMENTS

In this paper Filon addressed several problems concerning distributions of stresses and dis-
placements in a circular elastic finite cylinder under certain axisymmetric systems of surface
loadings which do not lead to the simple distributions of stress, usually assumed in practice.
Filon [16, p. 354] stated:

The three problems investigated are as follows:

— In the first, I consider a cylinder under pull not being applied by a uniform distribution
of tension across the plane ends, but by a given distribution of axial shear over two zones
or rings, towards the ends of the cylinder.

— The second is that of a short cylinder compressed longitudinally between two rough rigid
planes, in such a manner that the ends are not allowed to expand.

— The third case is that of the torsion of a bar in which the stress is applied, not by
cross-radial shears over the flat ends, as the ordinary theory of torsion assumes, but by
transverse shears over two zones or rings of the curved surface.
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The analytical method employed solves the equations of elasticity in cylindrical coordi-
nates, obtaining variables-separable solutions in the typical form :)ns {kz} x (function of r),

with r being the distance from the axis and z the distance measured along the axis.

The first problem corresponds to conditions which frequently occur in tensile tests, namely,
when the specimen is gripped by means of projecting collars, the pull in this case being
transmitted from the collar to the body of the cylinder by a system of shear stresses. Filon con-
structed an approximate solution for a case where there is no radial pressure applied externally,
and a uniform shear loading is applied between two zones. Although the solution gives zero
resultant tension across the plane ends, it is found this arrangement cannot completely satisfy
the condition of zero shear stresses on these planes. It is observed that a self-equilibrating
system of shear stresses acts over the plane ends. The effect of these shear stresses diminishes
with distance from the plane ends, which endorses the classical principle of Saint-Venant,
assuming isotropy and homogeneity of the elastic material. The length of the cylinder is taken
to be /2 times the diameter. The two bands of shear loading each extend over one-sixth of
the length and are at equal distances from the mid-section and the two ends. Filon [16, p. 355]
proceeded:

It is then found that the stress is greatest at the points where the shear is discontinuous,
i.e., at the ends of the collar in a practical case. At these points it is theoretically infinite.
This result is true whatever the dimensions of the cylinder. For materials like cast iron
or hard steel, which are brittle, such points would therefore be those of greatest danger;
but in such a case as that of wrought iron or mild steel, for instance, the stress will be
relieved by plastic flow.

The tensile stress varies considerably over the cross-section, and the distortion of the
latter is large. Towards the middle of the bar, the axial displacement at the surface is,
roughly, twice what it is at the centre.

In tensile experiments the elongation is usually measured by the relative displace-
ment of two points on the outer skin of the cylinder, as recorded by an extensometer.
When the test-piece is seized in this way, the surface stretches more than the interior, and
consequently a negative correction should be applied to the readings of the extensometer.
In the somewhat extreme case considered, this correction may amount to as much as 30
per cent.

Filon also presented a limited number of tables and figures to illustrate the values of the
radial and axial displacements and of the four stresses for points in the cylinder at distances
from the axis equal to 0, 0-2a, 0-4a, 0-6a, a; a being the radius of the cylinder; and for intervals
of length parallel to the axis equal to tenths of the half-length; these results were briefly quoted
in [18, Section 7.04]. The table for the axial stress in the finite cylinder, normalized with
respect to the applied shear stress, has often been reproduced; for example, see Timoshenko’s
well-known textbooks, [14, Section 58], [15, Section 110], [8, Section 143], Lur’e’s treatises
[19, Section 6.3]; [20, Section 7.7], and a less known book [21, Chapter 6].

The motivation for the second problem is derived from the observation of the crushing
of cylindrical blocks of cement or stone, when they are compressed between metal plates,
such that their ends are constrained from movement; see also [7, Section 189] for a short
description of the problem. The analytical solution is made up, partly in terms of a finite
number of solutions, which are algebraic and rational in r and z, and partly of infinite series
involving sines and cosines containing z. By suitably combining these two types of terms,
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the main boundary conditions can be satisfied. Tables of the stresses are given for a large
number of points in the cylinder in which the length is nearly equal to the diameter (the
exact ratio used was /3, in order to minimize the numerical calculations in the pre-computer
era). From these the principal stresses and the principal strains were calculated. Also, using
interpolation, contours of the maximum stress, the maximum stretch, or the greatest principal
stress-difference in the cylinder were calculated.

These curves show that, irrespective of the theory of yielding adopted, namely, the greatest-
stress theory, or the greatest-strain theory, or the greatest-stress-difference theory, failure of
elasticity will begin to take place around the perimeter of the plane ends. The fact that yielding
first occurs at the perimeter, when the stress exceeds 1/1-686 of the limiting stress for uniform
pressure, leads to the conclusion that the strength of a cylinder under this system of stress is
considerably lower than the strength of a cylinder subject to uniform compression by normal
traction alone.

The values of the apparent Young’s modulus and of the apparent Poisson’s ratio are inves-
tigated. Young’s modulus is shown to vary between its true value, when the cylinder is long,
and the value of the ratio of the axial stress to axial contraction, when lateral expansion is
prevented by a suitable pressure, this last estimate corresponding to the case when the cylinder
is made very short. The main results of the solution to this problem were later reproduced in
[18, Section 7.08].

Finally, the third problem corresponds to the case of a cylinder whose ends are surrounded
by a collar so that the applied torsional couple is transmitted to the inner core by means of
shear stresses. As a numerical example, a cylinder whose length is /2 times its diameter,
is considered. A uniform transverse shear is applied over bands of its cylindrical surface, the
width of these bands being one quarter of its length. Using the exact expressions obtained, the
stresses and transverse displacement are calculated for various points, and these are compared
with the values calculated from the approximate expressions when the cylinder is long. It is
found that the agreement is reasonably good, whereupon it is inferred that, in torsion, the effect
of local action dies out more rapidly than in cases involving either tension or compression.

Filon noted that in all his problems, when the applied transverse shear varies discontin-
uously, as in this case, the other stress becomes infinite at the points of discontinuity. This
suggests the detrimental influences of abrupt changes in the section of the cylinder can con-
tribute to failure. The projecting parts acting upon the inner core will introduce a sharp change
in the applied shear stresses. It has been noticed that propeller shafts usually break at such
points. This problem was cited by Love [7, Section 226B].

As a comment, Filon’s paper [1] still remains citable: according to ISI database (January
2003) it has been cited 32 times since 1982, which is a creditable accomplishment for an
article that appeared a hundred years ago! The citations mainly concerned testing experi-
ments on various solid materials in structural [22-34], polymer [35-37], composite [38-45],
rock [46-47], and biomechanics [48-53]. (It does not mean, however, that in earlier studies
Filon’s paper [1] went unnoticed; for example, the authors are aware of publication [54], and,
probably, many more exist.)

Studies of an axisymmetrical equilibrium of an isotropic finite elastic cylinder published
over the past century are too numerous to be mentioned individually. Among analytical ap-
proaches to the rigorous solution of the boundary-value problem we mention the method
of eigenfunction expansion and the method of superposition. The first method represents a
natural generalization of the classical expansion in scalar eigenfunctions for the Laplacian
boundary-value problem to the vector boundary-value problems for the Lamé vector equation
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for displacement vector u(r, z). It consists in usage of a representation of this vector as a
sum with yet undetermined complex coefficients C; on the complex vector eigenfunctions
Us(r, z) = Ug(r) exp(iB,sz) that leave the curved boundary r = a, traction-free. These ‘tran-
sitionary modes’ or ‘homogeneous solutions’, using a terminology of Dougall [55] or Lur’e
[56], respectively, lead to a transcendental equation for g

(Ba)? [I£(Ba) — I§(Ba)] + (2 — 20) I} (Ba) = 0, 1)

where o is Poisson’s ratio. This equation was first obtained by Schiff [57]; see [58] for
comments. Later Steklov [59] obtained a more complicated equation while considering an
analogous problem for a hollow cylinder. Although the roots of the equation are not analyzed
in any detail, it is mentioned that this equation has a trivial double zero root. (Remarkably,
Steklov erroneously claimed that all other roots should be real and positive. Dougall [55,
p. 939] correctly established that Equation (1) has an infinite number of complex roots and
provided an approximate expression for large j;, but he too was mistaken in stating that the
equation has an infinite number of real roots.) In an additional note dated 3 October 1901,
Filon [1, p. 151] correctly pointed out that the eigenfunctions-expansion approach to solve
the problem suggested by Schiff [57] leads to a certain transcendental equation and non-
orthogonal systems of functions that essentially complicate the solution from a numerical
point of view. (It is worth noting that the expression on the left-hand side of Equation (1)
appears in the denominator of some of Filon’s analytical representations.) Vorovich [61] and
Prokopov [60] gave a detailed overview of the twentieth-century developments in applications
of the eigenfunctions method to various problems of equilibrium of elastic cylinders; see
also [19, Chapter 7] for a typical example which also illustrates the amount of calculation
to be done. Solution schemes which employ the eigenfunction-expansion methods were also
considered by Little and Childs [62] and Flugge and Kelkar [63]. The participation factors
in the eigenfunction-expansion schemes were obtained by employing a variety of numerical
approximations, which do not always involve an infinite set of equations. Further methods
have been formulated by Horvay and Mirabel [64] and Mendelson and Roberts [65].

The second analytical method employed in the solution of the problem for a finite cylinder
is called the method of superposition. Lamé [66], in the twelfth of his famous lectures on the
mathematical theory of elasticity, described this approach when considering the equilibrium
of a three-dimensional elastic parallelepiped under any system of normal loads acting on its
sides. Only briefly mentioned by Lamé [67, Section 102] as a possible method of solution of
the two-dimensional scalar Laplace equation in a curved rectangle, this method for axisym-
metric vector problems of an elastic equilibrium of a finite cylinder 0 < r < a, |z] < ¢
was first addressed by Purser [68]. His paper went almost unnoticed, except for the study
by Pickett [69], who considered, using this method, the second problem outlined in Filon’s
paper [1]. The main idea of the method consists in using the sum of two ordinary Fourier and
Bessel-Dini series of the complete systems of trigonometric and Bessel functions in z and
r coordinates, respectively, in order to represent an arbitrary displacement vector and stress
tensor inside the cylinder. Each of these series satisfies identically the Lamé vector equation
within the cylinder and has a sufficient functional arbitrariness for fulfilling the two boundary
conditions, either on the curved boundary » = a or the flat ends z = +c. Because of the
interdependency, the expression for a coefficient of a term in one series will depend on all the
coefficients of the other series and vice versa. Therefore, the final solution involves solving
an infinite system of linear algebraic equations, thus providing finally the relations between
the coefficients and loading forces. Interest in the method of superposition was revived only
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in the 1950’s, when, almost simultaneously, the separate papers by Saito [70] and Abramian
[71] were published. For the second problem of Filon [1], this method naturally gave poor
results in the neighborhood of the circumference of the end planes. It is more than likely
that several investigators have attempted to obtain solutions to this classical problem, perhaps
either being unaware or, most likely, ignoring the thorny issue of stress singularities at the
edges where the radial displacements are constrained. In an informative paper, Benthem and
Minderhoud [72] examined the problem of the solid cylinder compressed between the rough
rigid plane ends that constrain the radial displacements on these plane ends to zero, thereby
correctly addressing the issue of the stress singularity at the bonded boundary. Due to the
bonded conditions, the order of the stress singularity at the boundary of the adhered region
is also influenced by the elasticity properties of the cylinder [73-78]. An exposition of the
method of superposition and a detailed survey of studies based upon it (with further discussion
of Filon’s second problem, in particular) can be found in [79-83]. In this issue this approach
is thoroughly addressed by several authors.

The aspect of decay of tractions in the elastic cylinder related to the third Filon problem
was discussed further by Love [7] and von Mises [84] and a more formal proof of this
variation on a theme by Saint-Venant was provided by Sternberg [85] (see also the review
articles by Dzhanelidze [86], Gurtin [87, Sections 54-56a], and books by Fung [88], Lur’e
[20, Section 2.8], and Davis and Selvadurai [89, pp. 180-187] for further references).

2.2. FILON’S PAPER OF 1903 ON THE EQUILIBRIUM OF AN ELASTIC RECTANGLE AND
ITS SUBSEQUENT DEVELOPMENT

In this paper Filon [2], addresses the elastic equilibrium of an isotropic elastic parallelepiped
x <lal,y < |b],z < |c|, in those cases where the problem may be treated as two-dimensional
one. A typical case is the one in which the loading is applied in the plane xy, with the thickness
of the plate being in the direction of the z-axis. This thickness is small compared to the other
dimensions of the plate, allowing us to approximate to the case of a thin plate under a thrust in
its own plane. The starting line of this study was the theory of ‘generalized plane stress’ as it
was later referred to by Love [7, Section 94]. The stresses in the plate, even under forces in its
own plane, are not two-dimensional, for the stresses parallel to the plane xy vary through the
thickness and the stresses normal to this plane usually vanish at the surfaces of the plate. Filon
showed that if it is assumed that the normal traction across a face perpendicular to z is zero
throughout the thickness (which will almost be true, the thinner the lamina), then the equations
connecting the mean displacements U, V with the mean normal stresses P, Q and shear stress
S in the plane of the plate (the mean here being taken in relation to the thickness of the plate)
are of the same form as the Lamé equations in the traditional plane-strain case relating the
actual displacement u, v with the three stresses in the plane of xy, provided only that we
replace one of the Lamé elastic constants, by A’ = 2ou/(A + 2u), where A, u are the elastic
constants of Lamé. Of course, since the plate is thin, the displacements u«, v will probably
vary little as we move across it, so that the mean values U, V will give us an approximation
to the displacements at every point. Similarly, the stresses in the planes parallel to xy will not
differ greatly from their mean values P, Q, S. Thus Filon showed that the stresses averaged
through the thickness of the plate could be calculated by an appropriate modification of the
plane-strain two-dimensional equations, by merely changing the elastic constants, namely

aP 9§ S 9
+ 222 L9 _

—+ — =0, — =0, 2
dx dy ax dy
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where
P= ) v + 0 +2 v
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0= (—+—)+2u—, 3)
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S ou oV
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This opened the way for the solution of a wide class of problems, for two-dimensional prob-
lems are usually very much easier to solve mathematically than three-dimensional ones.
Performing interesting manipulations (see also [90, Section 48]) Filon found general solu-
tions of Equations (2), (3) in terms of two arbitrary functions of the variable &£ = x + iy and
two arbitrary functions of the variable » = x — iy. Filon did not proceed, however, along this
avenue which might have led him to the famous Kolosov-Muskhelishvili formulae (see [90,
Section 49] for details) and the powerful method of complex variables in the two-dimensional
theory of elasticity. Instead, in the first part of the memoir he established the formal solution
for the general system of applied loading on the faces y = 4 b with only the statical stress-
resultants (total tension, total shear, total bending moment) at the faces x = + a being given.
These solutions were chosen in the form of Fourier series

S o[22 [ o
n=1

sinh a sin a

with arbitrary constants a,, b,.

In a short historical discussion in Section 43 at the end of the paper, Filon mentioned that
Ribiere in his thesis [91] had obtained similar representations for stresses and displacements
for a (long) elastic rectangle 0 < x </, |y| < b in the condition of plane stress. Ribiére used
a Fourier-series representation for the stress function on the complete system cos “7=. In this
way, initially, it appeared possible to satisfy exactly the boundary conditions over the sides
y = £ b. However, it was impossible to satisfy fully the conditions over the two short sides,
x=0andx =/.Hereu =0,v #0, P # 0, S =0, and mechanically it corresponds to an
infinite periodically-loaded strip with simple supports. If the ratio of the sides of the rectangle
is large, it was believed (according to Saint-Venant’s principle) that, at a large distance from
the short ends, the effect of any self-equilibrated system of loads may be neglected, and the
boundary conditions are fulfilled only for total tension, total shear and total bending moment.
Independently, Belzeckii [92] used a similar approach, but with the complete system sin “7=
in the Fourier series for the stress function. Here one hasu # 0, v = 0, P = 0, § # 0 that
corresponds to the conditions of “free support’. Later Papkovich [93, pp. 412-464], presented
a complete comparative analysis of the solutions of Ribiére and Filon-Belzeckii for several
cases of the loading of a rectangular plate. This served as a basis for a detailed study of some
practical cases of bending of box-shaped rectangular empty beams which are widely used in
shipbuilding.

Together with the infinite series (4), there enters into the solutions a finite number of terms
of the form ¢,,,x™ y". These represent solutions for certain cases where Equations (2) can be
solved in terms of polynomials, so as to give zero stress on the boundaries y = +b. For
instance, a uniform tension parallel to the x-axis, a uniform bending moment, and a uniform
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shear give rise to solutions of this type. These can be superimposed without affecting the stress
distribution over y = + b, and they are introduced to satisfy the terminal “total’ conditions.

When the length a of the beam is allowed to tend to infinity, the series degenerate into
integrals. The transformation and interpretation of these integrals are dealt with at length. It
is shown that they may be expanded in series of the form ) (d, + e,y)r" cosn¢, where r, ¢
refer to polar co-ordinates with the origin at any point in the beam, » is an integer, and d,,, ¢,
are constants, which are to be determined.

When the origin is a point on the surface y = b where a concentrated load is applied,
the series for the stresses start with a negative value of n = —1, giving terms which become
infinite when » = 0. In this case the corresponding series for the displacements contain terms
in log r and ¢, which lead to discontinuities and singularities. These, of course, could not
occur in any actual problem, since, in practice, the material in the vicinity of the concentrated
load would probably become plastic, so that in the immediate neighbourhood of such loads,
the solution will not apply. It is found that the terms involving infinities and discontinuities
are precisely those of the well-known solutions given by Flamant [94] for two-dimensional
problems for an elastic half-plane under a concentrated line force. The series of terms involv-
ing positive powers of r therefore represents the correction to Flamant’s expressions, when
the finite height of the beam is taken into account.

Filon considered several practical problems. The first problem concerns the case when
the external loads at the top and bottom faces of the rectangle y = + b are purely normal
and are symmetrical about the mid-section, x = 0. The benchmark problem of a long beam
lying on two supports and loaded by a concentrated force was considered in full. The results
were compared with Saint-Venant’s elementary theory and Stokes’s empirical formula for
the variation of stress in the mid-section. It is shown that, although the empirical formula
gives an approximation to the stress in certain regions, it cannot be relied upon (see also [7,
Section 245], [14, Sections 32, 42], [15, Section 32], [8, Section 40] for further discussion).
The variations in the central deflection, as the supports are brought closer together, are also
investigated. It is found that the discrepancy between the actual and the Euler-Bernoulli de-
flection (which excess is sometimes referred to by engineers as the “deflection due to shear’)
decreases eventually as the span decreases and, for exceedingly small spans, may even become
negative.

Filon studied the case of a beam under two opposite isolated loads, which leads to the more
interesting problem of abeam |x| < a,0 < y < b carrying an isolated load at the points x = 0,
y = b and resting upon a smooth rigid plane y = 0 capable of sustaining tensile tractions. The
distribution of the pressure Q(x, 0) upon the plane is investigated and a new form of expansion
found for it. (This study was repeated in a slightly different manner in [18, Sections 5.07—
5.10].) For a sufficiently long rectangle, this pressure becomes zero at |x| = 1-35b (almost
independent on the ratio a/b for a > 2b), and the compressive pressure changes to tension.
This result permits one to understand a simple experiment when an elastic block, acted upon
by a concentrated load on its upper surface, cannot lie in full contact with a smooth rigid plane,
unless the contact is capable of sustaining tensile tractions. At a certain distance from the force
the ends separate from the plane. An accurate analysis of this remarkable phenomenon has to
rely upon the solution of a complicated mixed-boundary-value problem where the boundary
of the separation zone is in itself an unknown. An approximate estimate of the dimensions of
the area in contact can be obtained by considering the area where the normal stresses Q are
positive; see [78, 95, 96] for further discussion.
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By combining a solution in the form of a Fourier series for a half-plane, Bleich [97] consid-
ered an interesting case when normal concentrated forces are applied at the centers of the short
sides of a rectangle with a < b; see [15, Section 20] and [8, Section 24] for further details.
This solution can be used for a quantitative estimate of the Saint-Venant principle: even for
this extreme case the distribution of the stress Q over the cross-section is almost uniform for
the distance a from the short ends.

The second problem is the case of a finite rectangular beam when the loads at y = +b
are still normal, but are asymmetrical with regard to x = 0. At the ends x = +a, shear
stresses had to be applied to guarantee a static equilibrium. In particular, the behaviour of a
beam under two concentrated loads acting in opposite senses on opposite faces of the beam,
their lines of action being on opposite sides of the mid-section, is studied. The manner in
which the shear stress across the middle section varies, as these loads are made to approach
each other, is shown in several figures. They illustrate how rapidly the effects of the particular
distribution of any total terminal load decay as we consider locations for from the end. At a
distance of the same order as the height of the beam, they already begin to be negligible. These
remarkable results were repeated in [18, Sections 5.07-5.10] and reproduced by Timoshenko
[14, Section 42], [15, Section 20], [8, Section 24].

The third problem deals with the case when the loads at y = + b are purely tangential,
in particular, they are single concentrated tangential forces applied either at point x = 0,
y = b (with additionally applied normal and tangential forces at the ends x = +a, to
ensure equilibrium) or symmetrically placed at four points x = +¢, y = +b. For the latter
case the correction to the readings of an extensometer (which measures the surface stretch),
owing to the difference of this distribution of terminal stress from the one usually assumed, is
investigated. It is found that errors will not be introduced, provided measurements are taken
beyond a distance 2b from the grips. Remarkably, these results were reproduced only in the
first textbook by Timoshenko [14, Section 42].

Finally, the fourth problem deals with the possible cases of solutions in the form of finite
polynomials; such a solution is obtained for a beam which carries a uniform load. (This
solution is usually attributed to Timpe [98], see also [14, Section 34], [15, Section 18], [8,
Section 22].) It is shown that the assumptions of the usual theory of flexure are in this case
no longer true, but are approximately true only if the height is very small compared with the
span. The correction to the curvature as calculated from the usual formula is found to be a
constant.

Filon’s remarkable memoir [2] remains widely cited in the recent research literature: ac-
cording to the 151 database (January 2003) since 1981 it has been cited 33 times in connection
with the general theory of stress distribution in infinite elastic strips [99-104], more accurate
evaluation of stresses in a finite rectangle [105-111], studies of cracks and fracture [112-118],
testing of materials [119-123], anisotropic elasticity [124-128], and even in dynamics [129,
130].

3. Filon: hislifeand work

A complete commentary of the life and work of Louis Napoleon George Filon was given in
the Obituary Note for the Royal Society records written by his student and later colleague
G.B. Jeffery (also published in [131]). The ensuing excerpts contain some data from this
commentary, in order to provide a more factual record of Filon’s life and works.
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3.1. FILON’S SHORT BIOGRAPHY

Louis Napoleon George Filon (1875-1937), M.A., D.Sc., F.R.S., was the only son of Augustin
Filon, the French littérateur who was tutor to the Prince Imperial. When Filon was three years
old his parents (at this time his father was blind and his mother was in bad health) came to
England. He began reading Latin and Greek before the age of six. Filon’s ambition was to
be a sailor. He was always drawing pictures of boats at sea and some of the models of ships
he made at that time are still in existence. In later life this old ambition showed itself in his
keen interest in the theory of navigation and in his one form of relaxation, namely, yachting.
Filon graduated from University College, London, in 1896, obtaining his B.A. degree and
receiving the Gold Medal for Greek. He was student of Karl Pearson and Micaiah J. M. Hill,
two teachers for whom he had both affection and reverence. In 1898 Filon was elected to an
1851 Studentship and went to King’s College, Cambridge. Here he published his benchmark
studies on the theory of elasticity in which he developed the theory of ‘generalized plane
stress’. In May 1910, he was elected Fellow of the Royal Society. At the time of his election he
was Assistant Professor of pure mathematics at University College, London. His proposers for
the election included a veritable collection of pure and applied mathematicians and physicists
of that time: M. J. M. Hill, K. Pearson, F. T. Trouton, A.E. H. Love, C. Chree, E. T. Whittaker,
E.W. Hobson, G.F.C. Searle, J.J. Thompson and H. H. Turner. He went on to become Vice
President of the Society. In 1912 Filon was appointed, as successor to Karl Pearson, to the
Goldsmid Chair of Applied Mathematics and Mechanics at University College, London. Filon
was on active service in France in the early months of World War I, but was recalled to
command the 2nd (Reserve) Battalion London Regiment. Subsequently, he was appointed
to the technical staff of the Admiralty Air Service. After World War |, Filon served as Vice-
Chancellor of the University of London; his work was marked by academic freedom and the
extension and development of teaching and research. The high offices in which he served and
the heavy responsibilities that were laid upon him never led him to neglect his primary duty as
a teacher. For years he carried a full lecturing time-table every morning and a full programme
of committees and councils every afternoon. He was a man of strong convictions and his
strongest conviction was the value of freedom. It was when he suspected an attempt to fetter
the freedom of the university teacher and to make him a cog of a wheel in an administrative
machine, that he fought with all his energy, neither asking nor giving quarter. Filon was elected
amember of the London Mathematical Society in 1904, he was a Vice-President of the London
Mathematical Society for the two years 1923-1925. He was also a Director of the University
of London Observatory and Fellow of University College, London. Filon fell victim to the
typhoid epidemic in Croydon, London and he died on 29 December, 1937.

Filon’s expertise was in applied mathematics, classical mechanics and particularly the me-
chanics of continuous media. In assessing Filon’s works in applied mathematics, it must be
said that he was unsympathetic towards the ‘modern developments’ of this subject at that time.
Although, the first edition of Whittaker’s A Course of Modern Analysis (1902) had a great
influence upon him. Filon loved to have a group of students working solidly through every
example in the book. In this way, he attained mastery in the art of manipulating Legendre and
Bessel functions — the ideal equipment for research in classical applied mathematics at that
stage. (The later editions became too “pure’ for his liking.) His integration formula for highly
oscillating trigonometric functions [132] is still in use [133, p. 890]. Filon wanted to rewrite
classical mechanics as a collection of axioms, postulates, and propositions along the lines of
Euclid [134, 135]. At the same time he wanted to treat it as a branch of experimental physics.
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A large part of his time and energy were given to reconciling these two views. He came to the
position that the fundamental principles must be established by quantitative experiment and
that the subject must be erected as a logical structure on the foundations thus laid and again
tested in every possible way by renewed appeal to experiment. Filon’s lectures on mechanics
were freely illustrated by experiment and he established a mechanics laboratory in which his
students carried out experiments for themselves.

Relativity, particularly the ‘general theory’, seemed to him to rest on too slender an ex-
perimental basis. He regarded it as a kind of pure mathematics that had drifted out of touch
with reality. For the quantum theorists he had nothing but scorn; their constantly changing
hypotheses seemed to him to be sheer madness and the negation of that logical structure he
expected to find in mechanics. As it was gradually borne in on him that the theory was actually
producing good results, he found it very difficult to understand how this could possibly be.

A more detailed biography of Filon with a complete list of his scientific works consisting
of 54 articles and 3 books can be found in [131]. This list, however, does not contain an inter-
esting review [136] which Filon wrote of the treatise on Elasticity by Southwell, stressing ‘that
it is a storehouse of precious information which no scientific engineer and no mathematical
physicist can afford to neglect.’

3.2. FILON’S STUDIES IN THE THEORY OF ELASTICITY

In Filon’s time, the study of the mechanics of continua, particularly the theory of elasticity,
was an important part of physical science. Jeffery [131, p. 315] wrote:

It is a field that had been well culled over in previous time and the problems that were
obvious and easy of solution had all been solved. Important and significant problems re-
mained unsolved, but they usually presented formidable technical difficulties. Filon was
well equipped both by temperament and by training to wrestle with such problems. He
had a sound judgement in the choice of his subjects for research and turned to those which
either yielded results of practical importance or were sufficiently general to advance the
theory. His published work is singularly free from that multiplication of particular cases
and artificial problems which is a special temptation to workers in this field. He had the
mathematical courage that will tackle any problem, a resourceful mind and a pretty skill
in meeting technical difficulties, and the patient perseverance that could hang on until the
solution was reached.

Filon did important studies in several branches of engineering mathematics (as we refer to
this area nowadays), but one can discover a central line of development beginning in his works
[1, 2] on elasticity and culminating in his famous treatise on photo-elasticity [18] co-authored
with Coker. This treatise was and still remains not only the compendium of a powerful experi-
mental method for the exploration of the stresses in structures used in engineering practice (the
main advantage is that, although experiments must necessarily be carried out with transparent
material, the stress distribution is in certain circumstances independent of the material and
thus experiments on glass or celluloid can give information about the behaviour of structures
fabricated of materials such as steel), but also an exhaustive source of results on analytical
methods of solution of the two-dimensional biharmonic equation in rectangular, polar, and
elliptical coordinates. It also contains a thorough theoretical discussion of problems related
to multi-connected two-dimensional elastic domains with openings and cracks. This book
generalizes many of previous studies by Filon in the theory of elasticity scattered over some
British journals that are hardly available at the present time. Among them there are:
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— a further development [137] (see also [18, Sections 5.06, 5.15]) of the method of photo-
elasticity which is based on the experimental fact that an isotropic transparent body, when
stressed, becomes doubly refracting, with its optical principal axes at any point coincident
with the directions of the principal axes of stress at the point (cited by Love [7, Sections 57,
245A] and Timoshenko [14, Sections 45, 64]);

—adiscussion [138] (see also [18, Section 6.08]) of the theory of dislocations in the case of
two-dimensional systems (cited by Love [7, Section 156A] and Timoshenko [15, Sections 35,
64], [8, Sections 43, 96]);

—a special case [139] (see also [18, Section 4.37]) of isostatic stress equations which hold
in the case of plane stress, with application in photo-elasticity (cited by Love [7, Section 59]
and Timoshenko [15, Section 38);

— a complete solution [140] (see also [18, Sections 4.32, 4.33, 5.17, 5.18]) of the two-
dimensional problem on the stresses produced in a circular ring which is subjected to forces
in its plane (cited by Love [7, Section 187] and Timoshenko [15, Section 36], [8, Section 44]).

We want, however, to draw attention to Filon’s study [141] which went almost unnoticed.
In this paper he considered the general problem of expanding a given function f(x) in a series
of functions ¢ («,, x), where «, is the (real or complex) root of a transcendental equation
¥ (k) = 0. Based upon Cauchy’s theory of residues, Filon established a general theorem for
expanding a polynomial into a series of functions of the form ¢ («, x). Next, he addressed the
possibility of applying the method to a series of functions ¢ (x,, x) where «, and x do not
appear exclusively as a product «, x. Referring to Dougall [142, Section 40], and considering
the “flexural’ solution of the biharmonic equation in a semi-infinite strip |x| < b, y > 0,
with free of loading faces x = 4 b, Filon arrived at a system of two functional equations that
express the expansions of the prescribed normal f(x) and shear loadings at y = 0 on the two
systems of complex eigenfunctions with a single set of complex coefficients C,. He proceeded
to express explicitly (and uniquely, as he believed) the coefficients C, by means of only one
equation, provided f(x) was a polynomial. He gave an example of such an expansion,

3 b coshk, x sinh «, x
3 2 r r
= —xb° — — |k x ————+ 2=k, D) = , 5
T chf [K xsmhxrb +E-x )smhxrb} ®)
where «, is a complex root of the equation
sinh2«b — 2kb =0, (6)

and the summation extends to fRex, > 0.

This paradoxical mathematical result of the necessity of only one boundary condition f (x)
for normal loading, leaving the shear end stresses arbitrary, probably appeared so unusual to
Filon (and, apparently, to many others), that almost no further papers were published on the
subject for a long time. The single exception was the paper by Andrade [143] who noticed
that Filon [141] used only one equation; however, no explanation was provided. This paradox
was elucidated by Gomilko and Meleshko [144]. Further details and references related to the
method of eigenfunction expansions for the biharmonic problem in a rectangle (or a half-strip),
including the important bi-orthogonality property of these eigenfunctions that was established
independently by Papkovich [145, 146] and Smith [147] (see also [148]), can be found in
Meleshko [149, pp. 69-71]. Note that primary mathematical studies [150-154] need cautious
consideration.

As we remarked earlier, the underpinning of Filon’s contributions to the theory of elasticity
is the use of the biharmonic equation for the formulation of the problems. The biharmonic
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equation in itself is a departure from the traditional fare in the treatment of partial differential
equations in mathematical physics and engineering that invariably focus in the exhaustive
study of Laplace’s and Poisson’s equations, the diffusion equation and the wave equation.
The biharmonic equations usually arise as a result of the mathematical modelling of more
detailed physical phenomena encountered in science and engineering. The exact first usage of
the biharmonic equation is not entirely clear, since every harmonic function also satisfies the
biharmonic equation. One of the earlier applications of the biharmonic equation deals with
the classical theory of plates developed, among others, by J. Bernoulli, Euler, Lagrange, S.
Germain, Poisson, Navier, and Cauchy. Applications of the biharmonic equation to the math-
ematical modelling of thin plates continued with the contributions of Kirchhoff (who correctly
proposed the boundary conditions for the free edge of a thin plate), M. Lévy, Maxwell, and
Lamb. Informative accounts of the historical developments in the area of flexure of thin plates
are given by Kelvin and Tait [155], N&dai [156], Love [7], Timoshenko [9], Westergaard [157],
Timoshenko and Woinowsky-Krieger [158], Truesdell [12], Bucciarelli and Dworsky [159],
and Selvadurai [10].

The application of the biharmonic equation to the solution of two-dimensional problems
of plane stress and plane strain in the classical theory of elasticity commences with the
classical paper by Airy [160], who was Astronomer Royal and Director of the Greenwich
Observatory, London. (He occupied this position from 1835 until 1881!) The Airy stress
function was proposed in the course of an analysis of the structural supports for telescopes
(see Meleshko [149, pp. 37-40] for further comments). These studies were followed by the
works of Boussinesq, Hertz, and Love (see [9], [161]) dealing with the axisymmetric problem
in the classical theory of elasticity, where the governing equations can be reduced to a single
biharmonic equation for a scalar-valued function. An example of such a biharmonic function
is Love’s scalar potential [7, Section 188]. The biharmonic equation is also encountered in
recent developments dealing with elasticity problems for inhomogeneous media developed by
Spencer and co-workers [162-165]. In this innovative approach, a procedure is developed for
obtaining exact solutions for the equations of linear elasticity for materials that are isotropic
with an elastic inhomogeneity dependent on a specified coordinate direction.

The biharmonic equation is also encountered in the solution of two-dimensional problems
dealing with slow viscous flows of a Newtonian fluid. With axisymmetric problems, the slow-
viscous-flow problem yields a fourth-order partial differential equation for the Stokes stream
function, whereas in two dimensions the governing equation for the stream function is a
biharmonic one. This similarity between the two-dimensional problem for isotropic elastic
behaviour and the two-dimensional problem for slow viscous flows has been exploited in a
number of articles dealing with analogies dating back to Rayleigh [166]. Rayleigh also cites
the work on slow viscous flows by Helmholtz and Korteweg, and proceeds to mention (on page
356) that ‘Under the above restrictions, as is well known, the motion may be expressed by
means of Earnshaw’s current function v, which satisfies V4 = 0, the same equation as gov-
erns the transverse displacement of an elastic plate, when in equilibrium.” Others, including
Goodier [167], Hill [168], Prager [169], Adkins [170] and Richards [171] (see also Meleshko
[149, p. 36] for additional references), have used this observation to develop solutions to
various problems involving plane stress and plate-bending problems in the infinitesimal theory
of elasticity. This analogy has also been adopted in the formulation and solution of plane-strain
problems in both finite elasticity [172, 173] and in second-order elasticity theory, where the
governing partial differential equation for a displacement function is of a biharmonic type
[174].
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4, About thisissue

This special issue brings together a collection of papers that addresses the importance of
Filon’s contributions to solid mechanics and mathematics and those that examine the con-
tinuing importance of the biharmonic equation in engineering mathematics in general and in
solid mechanics, in particular.

The paper by Bespalova and Kitaygorodskii presents a method for the solution of the
biharmonic equation, which is derived from the seminal studies by Kantorovich. The mixed
analytical-numerical scheme is applied to problems involving clamped plates and to Filon’s
problem of the symmetric compression of a beam with a rectangular cross-section, by an
equilibrating distribution of loads of finite width.

The paper by Davis deals with the rotational effects of Stokes flow when pressure-driven
extrusion takes place in an annular opening in a rotating wall. The paper employs Abel-
transform techniques to reduce the problem to three coupled integral equations. Formal re-
sults are presented to both limiting cases involving spatial dimensions and to quantities of
engineering interest.

The paper by Flavin examines the spatial-decay estimates for a generalized biharmonic
equation for elastic materials with spatial inhomogeneity in the elastic constants. Elastic
inhomogeneity can occur naturally in geologic media and may be introduced purposely in
functionally graded materials. The decay estimates are derived for different classes of elastic
inhomogeneity applicable to a state of plane strain in a rectangular region where three adjacent
sides are maintained traction-free.

The paper by Gomilko deals with the Dirichlet problem for the biharmonic equation for a
semi-infinite strip. The superposition technique is an adaptation of the work of Lamé to two-
dimensional plane problems. The analysis presents both formal results and general theorems
applicable to the Dirichlet problem.

The application of a discrete double-Fourier-series method for solving plate-bending prob-
lems involving plates of variable thickness is presented by Grigorenko and Rozhok. The
methodology proposed reduces the two-dimensional boundary-value problem to a one-dimen-
sional problem by a suitable expansion into Fourier series in one variable. The presentation of
the general method is followed by certain limited applications to a simply supported plate of
variable thickness that is subjected to a double sinusoidal load.

The paper by Grinchenko is a survey of the approaches that have been adopted for the
solution of both harmonic and biharmonic problems, including a problem examined by Filon.

Computational approaches to the solution of the biharmonic operator equations are gaining
in popularity as the computational approaches are themselves being fine-tuned. The paper
by Katsikadelis and Yiotis deals with the boundary-element modelling of plates of variable
thickness that are elastically supported by a nonlinear two-parameter elastic foundation. The
paper presents the computational developments associated with the title problem where the
fundamental solution employed corresponds to the Green’s function for the biharmonic equa-
tion. This paper also presents several useful examples involving elastically supported plates of
rectangular and elliptical planforms, and with either clamped or simply supported boundary
conditions.

The paper by Karnaukhov and Senchenkov examines the thermomechanical behaviour
of a viscoelastic finite cylinder under harmonic deformations. The paper restricts attention
to isotropic viscoelastic materials characterized by a complex shear modulus and constant
Poisson ratio, thereby reducing the problem to a restricted class of materials. This facilitates
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the formulation of the three-dimensional dynamic loading of a finite cylinder since the eigen-
functions are independent of the viscoelastic parameters. The paper presents numerical results
for practical situations involving rubber mounts used in vibration isolation.

One of Filon’s lesser known works [138] relates to the observation how the difference
between two solutions to the same traction boundary-value problem with the same shear
modulus but different Poisson ratio, is related to the edge-dislocation problem with zero
boundary traction. The paper by Knops is an authoritative extension of Filon’s construction
for an elastic wedge. The paper is noteworthy in its complete exposition of the background
and its application of the complex-variable method in an elegant and economical fashion. The
paper should be of considerable interest to student and researcher alike.

The paper by Meleshko re-examines Filon’s problem for an elastic cylinder in the light of
the above mentioned superposition method. The paper provides a complete documentary of
the background of the problem, as well as comparisons of current results with those presented
by Filon a century ago.

The paper by Selvadurai examines the problem of the axisymmetric loading of an annular
crack by a disk inclusion placed centrally in the plane of the crack. The paper uses the Love
strain potential, which satisfies the biharmonic equation, to reduce the annular crack-disk-
inclusion interaction problem to that of a pair of coupled Fredholm integral equations of the
second-kind. The numerical solution of these integral equations is used to develop results
for the axial stiffness of the disk inclusion and for the Mode Il stress intensity factors at the
boundaries of the annular crack.

Ulitko and Lyakh examine the problem of a circular rigid shaft of a finite radius that is
embedded in bonded contact with an isotropic elastic plane with a radial slit and subjected
to a concentrated couple, which results in a finite rotation. The analysis presented is a very
complete treatment of this innocuous-sounding problem that also accounts for the correct
oscillatory form of the stress singularity at the boundary between the rigid shaft and the elastic
medium at the free surface of the radial slit. The authors also present numerical results for the
stress state and for the torsional stiffness of the embedded shaft along with a comparison with
results provided by Neuber [175].

Finally, the paper by Villaggio deals with an approximate one-dimensional model of trans-
ferring force to an elastic half-plane from a thin elastic rod firmly attached to it horizontally.

5. Concluding remark

History, to paraphrase Leibniz, is a useful thing, for its study not only gives to those of the past
their just due but also provides those of the present with a guide for the orientation of their own
endeavors. It is hoped that this special issue of the Journal of Engineering Mathematics will
help to honour Filon’s works written at the beginning of the twentieth century and through
these works provide a new impetus for the twenty-first century. Should the present issue
achieve this objective, it will have accomplished its primary goal.
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